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ABSTRACT 

Recent developments in experimental methods for mea
suring the characteristics of plane compression waves are 
reviewed, and analytical methods for inferring constitutive 
relations from measured wave profiles are discussed. A gene
ral method, requiring only pressure or particle velocity 
measurements, is proposed that is applicable to arbitrary 
waves in which equilibrium or steady state may not obtain. 
A summary of current knowledge of constitutive relations ob
tained from plane wave experiments is also presented. 
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DETERMINATION OF CONSTITUTIVE RELATIONS 
FROM PLANE WAVE EXPERIMENTS 

I. INTRODUCTION 

The behavior of solids under impact loading at stresses above the 

linear range of material response has been a subject of study since about 
1872. 1 The earliest work and much subsequent work has been done with 
experimental arrangements that produce conditions of one-dimensional stress, 

i.e. rod experiments. 

Since the Second World War increasing attention has been given to 
plane waves, in which the strain is accurately one-dimensional. Because of 
this strain cbndition deformation of the material takes place under super
imposed hydrostatic pressures and, at the higher stress levels, at elevated 
temperatures resulting largely from adiabatic compression. 

The most distinctive feature of plane wave compression, however, is 

the existence of shock fronts. In these fronts the strain rates can be 
exceedingly high - in many cases exceeding the resolution capabilities of 
the recording instrumentation. Nonequilibrium states necessarily exist even 
in a steady-state shock. Thus, a relatively complete time-dependent and 
temperature-dependent constitutive relation is required to predict plane-wave 
propagation; by the same token a wide range of information about material 
properties can be obtained from plane-wave experiments. 

The complexities of shock experiments are mitigated considerably by 

the accuracy with which the one-dimensional strain boundary condition can be 

produced. In rod experiments the corresponding one-dimensional stress condi
tion is less easy to verify and has been a difficult and annoying problem in 
experiments near the impacted end. 
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The constitutive relation obtained from shock experiments is, however, 
that pertinent to one-dimensional strain, and it is probably unreasonable to 
expect that from experiments in this geometry alone one can infer a completely 
general constitutive relation. Nearly all experimental techniques measure 
only the stress component in the direction of propagation. The component in 
the direction tangential to the wavefront can usOally only be inferred. 
Where hydrostatic compression data are available comparison with shock data 
permits the shear stress behind the shock front to be deduced. Alternatively, 
measurement of the states obtaining in the relief of stress (via a rarefac
tion wave) from a shocked state provides much information about the yield 
stress under shock conditions. 

To a considerable degree shock waves have been used as experimental 
tools for the study of high pressure physical phenomena and several reviews 
have appeared in recent years which emphasize that aspect of shock wave phys
ics. 2-6 For these studies stress anisotropy and stress relaxation effects 
are undesired complications and are frequently ignored. Such effects are not 
negligible at lower pressures or where wave propagation is the principal 
interest. 

In this article we focus on the experimental aspects of nonlinear 
plane wave propagation in solids . Our attention is thus directed princi
pally to stresses between the elastic yield point and stresses one or two 
orders of magnitude higher . To predict wave propagation in this regime 
requires a time-dependent constitutive relation for one-dimensional strain. 
The converse of this problem, namely how to deduce constitutive relations 
from observations of wave propagation, is the central theme of the paper. 
An earlier review of this aspect of shock wave physics has been given by 
Karnes. 7 

The remainder of this section is devoted to a brief description of 
some of the most important features of the shock transition. Section II 
reviews methods for producing plane waves, and describes recent developments 
in recording techniques for observing wave behavior. 

I 
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In Section III analytical methods for extracting information about 
constitutive relations from measured wave profiles are discussed. In that 
section I propose a rigorous method for the reduction of pressure-time data 

that does not require the usual assumptions of steady state or equilibrium, 
isentropic flow.* Section IV presents a review of current knowledge of 
constitutive relations derived from plane-wave experiments. 

A. Some Properties of Shock Waves 

1. Jump Conditions 

By "shock front" one means a compressive (usually) wave 
front which is steady. That is, a shock front transforms the mechanical 
and thermodynamic state of the material to one of higher stress, density, 
energy and mass velocity. The initial and final states are equilibrium 
states but the transition region, or shock front, necessarily involves non
equilibrium states. Because the transition region is steady, no mass, 
momentum, or energy accumulates within it and conservation laws can be 
applied to relate the initial and final states. These conservation laws, 
called the Rankine-Hugoniot jump conditions, can be written: 8 

(1 ) 

(2) 

E - E = 1 0 
(3) 

In these equations V (= p-l) is specific volume, P is the 

component of normal stress in the direction of shock propagation (not neces
sarily an equilibrium stress), E is specific internal energy, u is mass 
velocity, and U is the shock front velocity. Subscripts 0 refer to the state 

* While this paper was in preparation I learned that Mr. Roger Williams had 

made the same discovery independently.37 
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ahead of the shock, while subscripts 1 refer to the shocked state. 

It is readily shown that these equations imply that the 
entropy of the shocked state is higher than that of the initial state. 2,a 
The locus of equilibrium states given by Eq. (3) is, for a given material 
in a given initial state, a unique function called the Hugoniot, or R-H 
curve, which therefore lies above the isentrope through the initial state. 
A complete equation of state for a material can be characterized by a 
family of R-H curves centered on different initial states. 

Note that the components of normal stress parallel to the 
shock front do not enter the equations directly. They influence the shock 
only through the equation of state, which properly should be termed the 
equilibrium constitutive relation for one-dimensional compression. 

The jump conditions apply not only to the equilibrium end 
states but throughout the transition region since each portion of the front 
is also steady. Equations (1) and (2) can be combined to give: 

(4) 

Since all parts of the wave travel with the same velocity, U - uo' with 
respect to the undisturbed material, the locus of P, V, E states in the tran
sition must lie on the straight line joining the initial and end states in 

! the P-V plane. This line is called the Rayleigh line. (Figure 1.) 
. 

The difference between the Rayleigh line and the R-H curve 
at a given volume is approximately the non-equilibrium stress obtaining in 
the transition region and is primarily responsible for the entropy produc
tion.* If the material is treated as a viscous fluid, the steady-state shape 
of the shock front can be derived by relating the non-equilibrium stress to 
the stress rate or strain rate.g,lD 

2. Stability of Shock Waves 

* The thermal part of this difference is normally negligible in solids. 
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In solids a single shock front is frequently unstable and 
a compressive wave propagates as two or more shock fronts. The stability 
criterion is derived by assuming the shock to consist of two fronts and com

paring their relative speeds. 2 

Assume that the first shock, travelling with velocity UB 
in laboratory coordinates, transforms the state to PB - PA' uB - uA. Its 

velocity with respect to the material behin~ it is then UB - uB. The velo
city of the second shock is Uc in laboratory coordinates, and Uc - uB with 

respect to the material ahead of it. The final state is PC' VC. 

Employing the jump conditions, Eqs. (1) and (2), these 

velocities can be written 

If the assumed second shock travels faster than the first a single front is 
stable. Thus, the condition for stability is: 

Graphically this means that the Rayleigh line joining 

point PB' VB with PC' Vc is steeper (more negative) than that joining PB' VB 
with PA' VA· (Figure 2.) 

A cusp in the P-V curve as indicated at point B in Figure 

2 occurs in the majority of solids at the elastic yield point. Because the 

strain is one-dimensional, shear stresses are developed by a plane wave. In 

an elastic solid the relation is: ll 

* Although this derivation is not entirely rigorous, more detailed examination 

shows the result to be correct. 
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T = [{1-2v)/{2{1-v))]P 

where T is the shear stress and v is Poisson's ratio. Clearly, as P in
creases so does T until the material yields. The elastic portion of the 
P-V curve has slope, 

-(dP/dV) = K + (4/3)~, 

where K is the bulk modulus and ~ the shear modulus. In the plastic region 
above the yield point the slope is reduced to (neglecting work hardening): 

-(dP/dV) = K 

Accordingly there is a range of shock amplitudes for 
which the stability criterion is not satisfied. Since K increases with 
pressure, however, the unstable region is bounded at higher pressures 
(Point 0 in Fig. 2) as well as at the elastic limit. 

Instability can also result from phase transformations. 
The isothermal volume discontinuity of a first-order phase change frequently 
corresponds to a cusp in the R-H curve and the consequent separation of shock 
fronts is very suitable for experimentally detecting the transition and 
measuring its pressure. 

3. Reflections at Interfaces 

For plane waves the interaction with a boundary of dif
ferent shock impedance is characterized by continuity of the stress normal 
to the boundary and the mass velocity. For this reason it is convenient 
to consider the relations between stress and particle velocity obtaining 
in shock transitions and in rarefactions. 

The shock velocity can be eliminated from Eqs. (l) and 
(2) to give 

- I 
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(5) 

From this relation a family of curves can be plotted in the P-u plane, once 
an equation of state is given, that represents the locus of equilibrium P, 
u states attainable by a shock transition from a given initial state. Except 
for the end states the .transition states do not lie on this curve but on the 
straight line joining the end states, analogous to the Rayleigh line in 

the P-V plane. Those curves with positive slope are pertinent to forward
facing shock fronts (i.e. shock fronts travelling in the +x direction); those 

with negative slope pertain to backward-facing waves. 

For rarefaction waves, which reduce the stress and accele
rate the material in the direction opposite to that of propagation, the 
relation between stress and mass velocity is given by the Riemann integral*:8 

ul - Uo = ± f(dP/pc} (6) 

where c is the local sound speed. 

This relation can also be represented in the P-u plane as 
a family of curves, and, as for shocks, forward-facing waves are described 
by the curves with positive slope, while backward-facing waves are described 
by those with negative slope. 

Where the effect on the R-H curve of the entropy change 
inherent in the shock transition is small the two families of curves are 
the same and no distinction need be made. All transitions from a given 
initial state must lie on one of the two curves passing through that state. 

For example, consider the reflection of a forward-facing 

shock in material A at an interface with material B, assumed to possess 

smaller shock impedance than A. (Figure 3.) The initial shock is repre
sented by Pl,u l and lies on the P-u curve of material A centered on (O,O). 

* This result is a consequence of assuming constant entropy and therefore 

does not hold across shock fronts. 
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Reflection of the shock at the boundary produces a backward-facing rarefac

tion in A and a forward-facing shock in B. The common state at the interface 
must lie on the intersection of the appropriate curves centered respectively 

on (P 1 ,u1) and (0,0), i.e. the final state is (P2,u2). 

If material B were a free surface the reflected rarefac
tion would have carried material A to zero pressure and the free-surface 
velocity, ufs ' Note that if the p-u curves for shocks and rarefactions are 

the same the free-surface velocity is just twice the particle velocity prior 
to reflection. This result is frequently used to infer particle velocities 
from measured free-surface velocities for well-behaved materials. 

The P-u plane is an indispensable tool for qualitative or 
semi-quantitative analysis of complex wave interactions and a set of curves 
for known materials is to be found in virtually all experimental laboratories. 

II. EXPERIMENTAL TECHNIQUES 

A. Production of Plane Stress Waves 

The principal tool for producing plane stress waves for the 
study of constitutive relations is the single stage compressed gas gun. 

. 1 11 d . h d' 12-14 For preclse y contro e lmpacts t ese eVlces are at present unsurpassed. 

Existing guns vary considerably in their design; nevertheless 
there are certain common features. They are all smooth bore, usually having 

been drilled to close tolerances from a solid forging or casting. They use 

compressed nitrogen or helium as the driving gas, pressurized up to about 

6000 psi. Substantially improved performance would result from the use of 
hydrogen, but handling and safety problems have discouraged use of this gas. 
Siegel has given an exhaustive treatment of the gas dynamics in guns of this 

15 type. 

The projectile diameters vary from 2-1/2" to 6"; the barrel 
lengths from about 10' to 100'. The velocities achieved yary from about 
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0.1 mm/~s to 1.5 mm/~s. Higher velocities are exceedingly difficult to 
reach in a single stage gun, except that use of hydrogen could increase the 
velocities to about 2 mm/~s. Velocities lower than 0.1 mm/~s can be achieved 
but non-reproducible frictional losses tend to make the projectile velocities 

erratic in this range. Table I shows some pressures produced by impact at 

1.5 mm/~s. 

The barrels are evacuated ahead of the projectile to prevent a 
gas cushion from distorting the wave shape. Hard vacuums are evidently not 
necessary; Barker was able to detect no effect at residual gas pressures 

below 0.6 torr in the Sandia 3 meter gun. 16 Impact with the target usually 
takes place an inch or two in front of the muzzle to provide space for expan
sion of the projectile while still maintaining a maximum degree of alignment 
of projectile and target. 

The tilt angle between the projectile and target must be pre
cisely controlled if true plane waves are to be produced, particularly at 
lower impact velocities. The angle of the wavefront with respect to the 
target surface is frequently an order of magnitude or more larger than the 
misorientation of the projectile with the target because of the large dif
ference between wave velocity and impact velocity. 

Large tilt not only produces two-dimensional flow but reduces 
the time-resolution of the recording instrumentation. Thus if the recording 
gauge has finite dimensions in the plane parallel to the impact surface, the 
time resolution achieved may be controlled by the time required for the wave 
front to sweep across the gauge. 

In practice angular misorientations of a few tenths of a milli

radian are commonly achieved. A tilt of this magnitude would typically 

result in a time resolution, for a gauge whose lateral dimensions are 1/4 
inch, of about 5 nanoseconds. Since this is comparable to the resolution of 

typical fast oscilloscopes the desirability of small tilt is obvious. 
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The recoil of guns of this type can be difficult to contend 

with while maintaining the precise orientations required. Where the target 
is mounted rigidly to the barrel, vibrations can precede the projectile and 
cause anomalous signals. A convenient solution incorporated into the gun 
of the Shock Dynamics Laboratory at Washington State University is to allow 
the gun to move freely while holding the target rigidly on a separate sup
port. 14 The motion of the gun greatly reduces the recoil forces and does 
not seem to adversely affect the tilt provided the barrel is maintained 

nearly torque-free. A drawing of the WSU gas gun is shown in Fig. 4. This 
gun has a 4" bore, a length of 46', and operates on nitrogen or helium to 
6000 psi. It is typical of many guns of this type. 

Guns that use gunpowder as the propellant are in limited use. 
Although they can be shorter for a given velocity, and therefore are less 
expensive, the problems of cleanliness and high recoil forces make them 
somewhat less desirable for studies of constitutive relations. 

For very high velocities, two-stage, light-gas guns can be used. 17 ,18 

The velocities of these guns can reach 8 mm/~s; however, the projectile diameters 
are generally less than two inches. This is a severe restriction since useful 
one-dimensional information is obtained from the target only before the effects 
of free lateral surfaces influence the wave shape. Accordingly only simple 
measurements of shock velocity, from which equation of state points are deter
mined, have been attempted with these guns. 

High explosives have been used to produce plane waves and are 
useful for extending the pressure range available from single-stage guns. 

These systems utilize a plane-wave lens to produce a plane detonation wave 
at the target interface. 2 In some cases useful information has been obtained 

from two-dimensional steady state waves produced by a running detonation. ll 

In addition to producing higher pressures, explosives are con
venient in that precise synchronization with recording instruments can be 
achi~ved. This is important when high speed cameras are used because they 

frequently record only over a small time interval and cannot be triggered 
by the event to be observed. 
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Disadvantages to explosives are that the plane waves produced 
are less precisely controlled than is the case with guns. Moreover, a con
tinuous range of impact pressures is very difficult to achieve. For these 
reasons explosives are most frequently used for equation of state measurements 
and for the study of other high pressure physical phenomena. 

Electron beams and lasers are also beginning to be used for the 
production of plane waves. 19 ,20 These produce stress waves through thermo

elastic coupling when radiant energy is absorbed in the target material in 

times short compared to the transit time of rarefaction waves. 

Electron beams provide much higher energy densities; with elec

tron energies in the range 0.2 to 5.0 mev the maximum fluence (energy per cm2) 
varies between about 35 and 300 cal/cm2. The corresponding stress pulses pro
duced depend on the absorbing material but are typically ten to several hundred 
ns in duration, and attain peak stress amplitudes up to about 100 kbar. The 
area over which the flux is reasonably uniform is a few square centimeters. 19 

Lasers operated in the pulse mode give comparable pulse dura

tions and irradiated areas, but deliver total energies one to two orders of 
magnitude less than do electron beams. 

These methods are most useful when it is desired to observe 
stress wave propagation under high temperature conditions or when very short 
pulse durations are desirable. 

B. Measurement Techniques 

Parameters which are directly pertinent to a description of plane 

stress wave propagation are the normal stress component acting across a plane 
perpendicular to the direction of propagation, the density or strain, the 

internal energy, the mass velocity, and, in general, two phase velocities. 

The existence of two phase velocities is not widely recognized and indeed for 
steady shock fronts or isentropic rarefactions the two velocities are the 

same. In general, however, they are distinct, as is shown in Section III. 
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Three independent relations expressing conservation of mass, 
momentum, and energy can be written relating the above parameters; Eqs. (1)
(3) are those relations for the special case of steady flow. Consequently, 
three measurements are required in order to determine the state. The normal 
stress components parallel to the wavefront are not directly involved. They 

can be inferred under certain conditions, however, by comparing the compres
sion and relief paths in the P-V plane or when a hydrostat is known 
independently. 

The measurements which can be most accurately made at present 
include the normal stress component and the free-surface velocity, which can 
be related in many cases to the mass velocity. For some materials mass velo
city can be mepsured directly. From measurements of these quantities at 
two or more locations in the sample one or both of the phase velocities can 
be obtained. 

A variety of optical techniques using high speed cameras have 
been invented and used successfully to record surface velocities (and wave 
velocities). These include argon flash gaps, inclined mirrors, moving 
images, and optical lever techniques. The precision of these methods is 
usually about 1% in wave velocity and 5% in free surface velocity. The 
time resolution is generally about 10 ns. 

Electrical methods are also in wide use and include electrical 
shorting pins, inclined resistance wires, and capacitor microphones. These 
also measure free-surface velocities with a precision comparable to that of 

optical methods. 

A transducer technique in wide use at present is the quartz gage, 

which measures the pressure at the interface between the sample and a disc of 

x-cut qUqrtz plated on both flat surfaces. 21 At stresses up to about 25 kilo
bars the current developed by the piezoelectric polarization of the quartz is 

proportional to the stress at the quartz-sample interface. Useful results 
have been obtained at higher stress levels but 50 ki10bars is about the upper 

limit. It has high inherent time resolution and is convenient to use. 
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All of the above techniques suffer from a common drawback; 
namely, the observations are made at an interface at which there is usually 
an impedance mis-match. Consequently, in order to infer the character of 
the undisturbed wave requires an impedance-matching analysis similar in 

principle to that mentioned in Section I. This analysis cannot be performed 
rigorously without knowledge of the constitutive relation of the sample, 
although useful information can be extracted by making some reasonable 
approximations and with subsequent iteration. For some materials such as 
aluminum the quartz gage is a reasonably good impedance match and the analy
sis is less sensitive to uncertainties in the constitutive relation of the 

sample. 

Detailed descriptions of the above techniques have appeared in 
several review articles in recent years and the reader is referred to those 
for a more thorough presentation. 2,22,23 The remainder of this section is 

devoted to more recent developments; these include piezoresistive gauges, 
electromagnetic velocity gauges, sapphire gauges, and laser interferometry. 

1. Piezoresistive Gauges 

Manganin wire was first used as a pressure transducer in 
hydrostatic apparatus by Bridgman in 1911. 24 It is desirable for this pur
pose because it exhibits a positive pressure coefficient of resistance and 
at the same time a very small temperature coefficient. 

In 1964, Bernstein and KeOugh,25 and Fuller and Price,26 

reported experiments in which a fine manganin wire was imbedded in an epoxy 
disc. The disc was used much as is a quartz gage; it was placed against the 

free surface of a sample and the change in resistance monitored as the pres

sure pulse, transmitted into the epoxy by an initial pulse in the sample, 

passed over the wire. (Figure 5.) These experiments established that the 
fractional change in resistance is linearly proportional to pressure up to 

about 300 kbar. 
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Numerous dynamic experiments have yielded pressure coef
ficients in the range27 

(1/R)(8R/8P) -3 = 2.0 to 2.9 x 10 /kbar 

The statically determined value is 2.6 x 10-3/kbar. 

These discrepancies have not yet been fully resolved; the 
values seem to depend on the supplier of the manganin and/or the calibration 
technique. For this reason some investigators use manganin gauges at pre
sent primarily as interpolation gauges between pressures established 
independent1y.28 For commercial manganin a value near 2.9 x 10-3 seems to 
be most widely observed; little or no temperature dependence has been ob
served so that the calibration should not depend on the material in which 
the mangan;n is imbedded. There is some indication that there is a hyster
esis effect so that the coefficient may be different when measuring the 
compression part of a pulse than when measuring the rarefaction portion. 
It is uncertain whether this effect is real, however, or what physical 
mechanisms might be responsible. 

In spite of these difficulties it seems reasonable to 
expect that, as development proceeds, a reproducible gauge with a wel1-
determined coefficient can be fabricated. 

Because of impedance mismatches between the sample and the 
insulating material in which the gauge is imbedded, the gauge used in this 
mode has the same limitations mentioned above when an undisturbed wave pro
file is desired. 

More recently, experiments have been performed in which 
the manganin is imbedded directly into the sample materia1. 27 In this mode 
a relatively undisturbed record of the shape of the pressure pulse is ob
tained. A variety of thin elements have been developed for this purpose. 
They are typically 0.001" or less in thickness and frequently are in the 
shape of a grid in order to increase the resistance of the active part of 
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the gauge while maintaining small lateral dimensions. 29 It is desirable of 
course to keep the thickness as small as possible in order to increase the 
inherent time resolution, which is dependent on the reverberation time 
through the thickness. Small lateral dimensions are also desirable to mini
mize losses in time resolution due to tilt of the wavefront with respect to 
the plane of the gauge. 

An example of one such grid is shown in Fig. 6. This gauge 
was photoetched from manganin sheet rolled to 0.00075" thickness. The lateral 

dimensions of the active element are 1/8" and the resistance is about 1.5 
ohms. This gauge has four terminals in order to use a bridge method for 
recording the resistance changes. With the bridge method and a constant 
current power supply the effects of stretching of the current or voltage leads 
due to edge effects is minimized. 

When the sample to be investigated is an insulator a gauge 
of this type can be inserted directly into the sample with only a very thin 

layer of cement to fill the voids between the grid elements. If the sample 
is a conductor, however, thin insulation must be added to prevent premature 
shorting. Insulating materials such as mylar, mica, glass and Lucalox have 
been employed. Of these, Lucalox is attractive because it has high electrical 
breakdown potential, and it has high shock impedance so that the impedance 
match with metals is improved over, say, mylar. 27 Because of its low compres
sibility the change in capacity between the element and the sample is also 
minimized. A disadvantage is that fabrication of thin films is difficult; 
plasma sprayed films are one possible solution. 29 

The time resolution of these gauges when used in metal 
samples is somewhat poorer than the time resolution of quartz gauges, for 

example, principally because of the insulation thickness. If the total gauge 

thickness including insulation is several thousandths of an inch and several 

reverberations of the pressure pulse are required to establish equilibrium 
between the gauge and the sample, the time resolution can be of the order of 

30-50 nanoseconds. 
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Recording durations of gauges of this type are normally 
several microseconds, and for laboratory use are generally larger than the 

times for which one-dimensional flow can be maintained. Careful treatment 
of the leads is important for longer recording times since shearing of 
these is the usual cause of premature failure. 

Experiments with vapor plated manganin grids and with 
other materials such as calcium, lithium and ytterbium show considerable 

promise for improving the low pressure sensitivity of gauges of this type. 3D 

Calcium, for example, exhibits a pressure coefficient roughly ten times as 
great as manganin at pressures at least up to 28 kbar. However, it has much 
higher temperature sensitivity. 

An interesting variation on this method has been reported 
by Bernstein, et al. 3l They have used two manganin grids oriented respectively 
in planes parallel and perpendicular to the direction of propagation. Each 
grid measures the stress component normal to its plane so that the difference 
in signals is a measure of the effective yield stress. 

2. Electromagnetic Velocity Gauges 

When the sample to be studied is an insulator an electro
magnetic technique can be used to measure mass velocities directly. This 
technique was first used to measure detonation parameters in explosives. 
Its use in inert solids was first reported by Dremin who used it to deter
mine the behavior of glass under shock loading. 32 Ainsworth and Sullivan 
have also reported extensive measurements on rocks up to 3D kbar. 33 

The idea is that a fine wire or foil imbedded in an insu

lator develops a potential difference when it moves in a magnetic field. 
Thus, to the extent that the foil motion is the same as that of the insulator, 
a measurement of the voltage across the wire can be related to the mass velo

city of the insulator. 
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The experiment is shown schematically in Fig. 7. If the 
magnetic field strength is B. and t is the length of the foil perpendicular 
to both B and to the mass velocity. u, Faraday's law of induction reduces to: 

[ = -(a/at) f B·dA = Btu 

where E is the emf. If we insert typical values into this expression we 

find 

t = 500 gauss x 1 cm x 105 cm/sec = 0.5 volt. 

A field strength of this magnitude is readily attainable and yields an 
easily measurable signal at mass velocities of interest. 

It is perhaps surprising. in view of the simplicity of the 
method, that it has not been more widely used. It cannot be used, of course, 
on conducting samples because eddy currents induced into the sample would 
distort the magnetic field. 

One might suspect that the polarization field induced 
into an insulator, by virtue of the dielectric constant of the insulator, 
would distort the electric field in the wire or the magnetic field itself 
and influence the measurement. Detailed examination of these effects, how
ever, shows them to be negligible. 34 

Ainsworth and Sullivan state that the method is useful up 
to about 30 kbar. However, it is not clear why such a limitation need be 
imposed; Dremin reports measurements up to about 400 kbar in glass. 

When used with guns or explosives precautions must, of 

course, be taken to prevent the motion of the projectile or explosive gases 
from distorting the magnetic field. 

The precision reported by Dremin is approximately 3%. As 
with manganin gauges thin foils are desirable to achieve high time resolution. 
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3. Sapphire Gauges 

Some recent work has been devoted to developing sapphire 

as a transducer. 35 It is used in similar fashion to the quartz gauge, but 
depends for its operation on the change in capacitance due to the change 

in dielectric constant and to the reduced electrode separation resulting 

from shock compression. 

The current developed by the gauge is a function of the 
mass velocity of the impacted surface; the relation is linear at low velo

cities and is expressed as: 

o < t < £/U 

In this expression i(t) is the observed current, V is the initial applied 

voltage (of the order of 2 kilovolts), A is area of the disc, £ is the 

thickness of the disc, U the shock velocity, £i and yare the unstressed 

permittivity and the rate of change of permittivity with mass velocity. 

At higher impact velocities the relation becomes nonlinear, 

but can be readily expressed in terms of measurable constants of the material. 

Sapphire in the 60° orientation seems to be usable at 
impact stresses up to 100 kbar in the sapphire. Because its shock impedance 
is relatively high it provides a reasonably good impedance-match to heavier 
metals, such as iron. The principal disadvantage is the short recording time 
available from reasonable crystal thicknesses, caused by the high shock speed. 

This time is typically 0.25 ~sec. 

Other materials, such as ruby and Z-cut quartz have also 

been examined as possible gauges of this type. 35 The lower yield stress of 

ruby, however, limits its usefulness to stresses below about 40 kbar. Z-cut 

quartz is not suitable at present because it exhibits internal conduction 

and noise. 

I 



19 

4. Laser Interferometry 

Interferometric measurements provide the highest time and 

space resolution currently attainable. For these methods a laser is not 
only convenient as a coherent light source but is necessary in order to 
achieve the requisite high light intensities. 

Two schemes have been reported; both of them were developed 
by Barker. 16 ,36 The first of these uses the laser in a conventional Michel

son interferometer arrangement and is shown schematically in Fig. 8. The 
portion of the laser beam reflected from the mirror surface of the specimen 
is compared with that reflected from a stationary mirror. Interferometric 
fringes are thus formed, each of which corresponds to a displacement of the 
surface of one-half wavelength and the spatial resolution is therefore of 
the order of 0.3 micron. 

The laser beam is focused on the specimen mirror surface 
in order to minimize the effect of projectile tilt. This surface can either 
be a polished free surface, in which case the problems of relating free
surface velocity to mass velocity are the same as in many of the techniques 
mentioned above, or it may be a mirror surface plated on an internal sur
face of a transparent specimen. In this case a direct measure of mass 
velocity is obtained. In either case impact stresses must be limited to 
those for which the mirror retains its integrity. , 

When measuring the displacement of an internal surface a 
correction is required for the change of index of refraction of the shocked 
"window". The relation that best fits current data is the Gladstone-Dale 
formula: 36 

dp/p = dn/(n-l) 

where p is density and n is the index of refraction. 

The uncertainty introduced by lack of complete independent 

knowledge of the density in the shock (which is one of the parameters one 
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wishes to determine) does not produce serious errors because the density 
changes involved are usually small. 

The principal disadvantage to the technique described 
above is that the spatial resolution is generally too high. Consequently, 
for mass velocities greater than about 0.2 mm/~s the fringe frequency exceeds 
the capabilities of current recording systems (approx. 600 MHz). 

By means of a clever modification of the above technique 
the space and time resolution can be adjusted over a wide range; moreover, 
the fringe frequency is proportional to the acceleration of the mirror rather 
than to its velocity.36 Each fringe then corresponds to a velocity increment 
of predetermined magnitude. 

In this modification, the "velocity interferometer tech
nique," interference fringes are formed by superposition of two portions of 
the laser beam reflected from the specimen surface at different times. The 
earlier signal is delayed a predetermined amount with respect to the later 
signal. The arrangement is shown in Fig. 9. 

The operation can be understood by referring to Fig. 10. 
If the time through the delay leg is T = t2 - tl and the distance travelled 
by the mirror surface in that time is S, then 

S = UT 

where IT is the average surface velocity over the interval,. The signal 
reaching the photomultiplier at time (t2 + t c)' where tc is constant, is thus 
composed of the signal reflected at time t2 plus that reflected at time t l . 
If the velocity of the surface is constant in time the separation of the sur
faces, S = x(t2) - x(t l ), is constant and the fringe frequency is zero. If 
the surface accelerates, however, fringes will appear at the rate 

.p./2)(dn/dt) = (dS/dt) = ,(du/dt) 

._--
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or, since n is zero when u is zero, 

~(t) = (A/2T) n(t) 

where n is the number of fringes counted. 

The resolution of the system is controlled by the delay 

leg. For very small delays the number of fringes per velocity change is 
small and the resolution in velocity is correspondingly reduced. With a 
typical delay leg of 10 nsec and a wavelength of 6328 ~, the coefficient, 

du/dn = 31.64 m/sec/fringe. 

The time resolution, on the other hand, is equal to the delay time. This 
can be seen by observing that the technique effectively measures the sepa
ration of two surfaces displaced in time by T. Consequently, a constant 
velocity, for example, will not be observed as constant until both surfaces 
move with constant velocity, i.e. until the specimen surface has travelled 
with constant velocity for a time T. 

The balance to be struck between these two resoluiions 

depends on the experiment. The values indicated above, however, show that 
reasonably good resolution of both time and velocity are attainable. 

Although laser methods are somewhat restricted in appli
cation, the high time resolutions attainable and the accuracy with which they 
can be calibrated makes them essential tools in the experimentalist's reper
toire. 

III. INTERPRETATION OF EXPERIMENTS 

As indicated above current experimental techniques in general provide 

measurements of pressure-time or velocity-time histories at locations fixed 
with respect to the material, i.e. in Lagrangian coordinates. If the mea

surement is made at a boundary where the shock impedance changes, as in 
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free-surface measurements or quartz gauge measurements, the recorded data ' 
are characteristic of two superimposed waves - the incident wave plus the 

wave reflected from the boundary. To separate the effects of each wave 
requires knowledge of the constitutive relation (in general, time-dependent) 
of the material. Thus, in principle the derivation of a constitutive rela
tion from such measurements requires prior knowledge of the constitutive 
relation and the analysis is somewhat circular. 

Valuable information can nevertheless be obtained through a series of 
successive approximations. The question of convergence of these methods 
does not seem to have been treated theoretically, but frequently the results 
are not sensitive to small errors in the assumptions. Some of the techniques 
do not suffer from this uncertainty - notably piezoresistive pressure trans
ducers and electromagnetic velocity gauges. However, these techniques have 
other limitations so that most of the techniques in use are complementary. 

Once stress-time and/or velocity-time data are obtained for the undis
turbed wave in the sample the question arises how to interpret the data to 
derive a one-dimensional strain constitutive relation. If the compressive 
part of the wave is steady the jump conditions (Eqs. (1)-(3)) are valid and 
the analysis is straightforward. In the rarefaction portion of the wave 
one usually assumes that the states, while not steady, are nevertheless 
equilibrium states and that the stress is a function of the density only, i.e. 
the flow is assumed isentropic. The jump conditions can then be applied incre
mentally to yield a stress-density "isentropic" relation for the rarefaction 
part of the wave. The Riemann integral, Eq. (6); is just the integrated 

momentum jump condition (Eq. (2)). 

Unfortunately these assumptions are frequently not met in an experi

ment and the interpretation is accordingly not rigorous. 

An alternative means of interpretation is to assume a constitutive 
relation and attempt to reproduce the experimental observations by trial and 
error using a computer. This method is not only expensive but offers no 

guarantee of uniqueness. 
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A. Arbitrary Waves 

It is not difficult to show what kinds of measurements are neces
sary and how they should be interpreted in order to deduce directly the stress, 
density, and energy states obtaining in an arbitrary wave. This method 
requires no assumptions about the form of the constitutive relation, steadi

ness of the wave, or extent to which the states are equilibrium states. 

The equations expressing conservation of mass, momentum and 
energy are, in Lagrangian d· t 38 coor lna es: 

(aV/at) - Vo(au/ah) = a (7) 

(au/at) + Vo(ap/ah) = a (8) 

(aE/at) + (p/po)(au/ah) = a (9) 

In these equations h is the initial (undisturbed) coordinate of a particle, 
p is density (po is initial density), P is the stress component in the direc

tion of propagation, u is mass velocity, and E is specific internal energy. 

These equations are generally valid. The only restriction is 
that heat flow has been assumed negligible in Eq. (9). Thus, within that 
restriction, the equations apply equally to compressive or release waves 
and are independent of any assumption about the constitutive relation. 

We define two phase velocities associated with the wave as follows: 

and 

since hand t are the independent variables, P = P(h,t) and u = u(h,t), and, 
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Thus, 
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dP = (ap/at)dt + (ap/ah)dh, 

du = (au/at)dt + (au/ah)dh. 

c - -p 

cu 

aP/at 
aP/ah 

au/at 
au/ah 

Combining Eqs. (7) and (11): 

2 (po/p )(ap/at) - (l/cu)(au/at) = 0 

or 

2 (po/p )dp - (l/cu)du = 0, along h = const. 

Combining Eqs. (8) and (10): 

(au/at) - (l/pocp)(ap/at) = 0 

or 

dP = Pocp du, along h = const. 

Similarly: 

dE = (P/pocu)du, along h = const. 

Summarizing, we have 

dV = -du/lloCu 

(10) 

(11 ) 

(12 ) 
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(along h = const) (13) 

(14) 

These equations can be applied incrementally to observed wave shapes to 
relate velocities to stress, density, and energy. Note that Eqs. (12) and 
(13) are equivalent to the ordinary jump conditions in differential form 
(in Lagrangian coordinates) except that different phase velocities must be 
used. Only for steady state waves, discontinuous shock fronts or isentropic 
simple waves will these velocities be equal in general. 

The mass velocity can be eliminated from Eqs. (12) and (13) to 

give the stress-density relation: 

dP/dp = along h = const. (15) 

Clearly, this reduces to the acoustic relation whenever the phase velocity 

c = Similarly, we can write: 

along h = const. (16) 

Implementation of this method in experiments requires, at a mini
mum, measurements of pressure-time profiles at more than one location in the 
specimen. From these the velocities cp can be obtained and mass velocity 
profiles deduced from Eq. (13). Thence, Cu values can be obtained and the 
density and energy calculated. Simultaneous particle-velocity measurements 
would be valuable and might enhance the precision but are not essential. 
Particle velocity measurements alone, without pressure measurements, would 

require an iterative procedure to deduce P and cp and, although less conveni

ent, could be used. 

The data obtained are values of one-dimensional stress, density, 
and internal energy for each part of the wave as it progresses through the 

material. From this information one can fit various models to obtain a 
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general relation for stress as a function of strain, energy, strain-rate, 
history, etc. The stress components parallel to the wavefront might also 
be inferred from a variety of such measurements or from independent hydro
static data. 

or 

Similarly, 

The relation between the phase velocities can be derived from 

= (ah/at)p - [(ah/at)p + (ah/ap)t(ap/at)u] 

(ap/at)u 
= cp (aP/at)h 

(17) 

Consequently, the phase velocities will be equal whenever the stress is a 
function of velocity only, or when the wavefront represents a discontinuity 
in stress or mass velocity. 

There are two cases when stress is a functiQn of velocity only -
steady flow and . isentropic simple waves. This is shown in the following two 
sections. We can conclude immediately, however, that whenever P = P(u) the 
lines of constant phase are straight lines in the h,t plane. That is, Cu = 
cp = Cp(P) from Eq. (13), and (acp/ah)p = O. 

B. Steady State 
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For steady state shock fronts the phase velocity cp is the same 
for all parts of the wave and Eq . (13) can be integrated to give the usual 
momentum jump condition 

P - P = p (U-u )(u-u ) 
000 0 

where cp has been replaced by the shock velocity with respect to material 

coordinates, U-uo ' Further, since P is a function of u only, we have: 

_ dU(dP/ atJ ap _ 
Cu - dP du/dPjah - cp 

Thus, Eq. (12) becomes 

Integrating yields the continuity jump condition 

The stress-volume curve is seen to be a straight line joining the end states 
(Rayleigh line) for, integrating Eq. (15) yields, 

= V I(P-P )/(V -V) 
000 

= const. 

Finally, Eq. (16) yields the Rankine-Hugoniot relation : 

Note that this derivation does not require that the states be equilibrium 

states (except insofar as steady state implies equilibrium end states). More
over, if the shock front is considered to be a discontinuity then cp = Cu 
and the jump conditions hold even if the flow behind the wave is unsteady. 

C. Isentropic Flow in Fluids 
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The development of non-linear wave propagation theory in fluids 
relies heavily on the method of characteristics. 8 This method, in turn, 
depends on the assumption that the flow is everywhere particle-isentropic 
and that, therefore, all states are equilibrium states. 

If to Eqs. (7) and (8) we add the relations: 

(18) 

and 

P = pep,S) (19) 

where S is entropy, we can write: 

on h = const., 

where a is the sound speed with respect to spatial (Eulerian) coordinates. 
This relation allows us to eliminate the derivat1ve in p from Eq. (7): 

or 

(20) 

Multiplying Eq. (8) by a, 

pa(au/at) + (pa/po)(aP/ah) = 0 (21) 

Adding and subtracting these gives 

[(a/at) ± (pa/po)(a/ah)]P ± pa[(a/at) ± (pa/po)(a/ah)]u = 0 

The original equations are now reduced to a directional derivative and 

I 
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separate into ordinary differential equations along characteristic lines. 
Thus, along characteristic curves given by 

dh/dt = ± pa/po (22) 

the compatibility relations obtain: 

dp ± padu = 0 (23) 

These, combined with Eq. (17) 

(as/ at)h = 0 

can be solved by stepwise integration to yield a solution to the flow for 

given initial and boundary conditions. 

Where the wave propagates into a constant state (simple wave) 
entropy is the same throughout the flow and Eq. (23) can be integrated to 
give the Riemann integral: 

u - Uo = I dP/pa. (24) 

This relation is frequently used in the analysis of experimental data for 
rarefaction or continuous compression waves. By measuring the propagation 
speed of pressure or mass velocity increments, Eq. (23) can be integrated 
numerically to yield pressure-velocity and pressure-density relations. Note 
that this method is a special case of the general method outlined in Section 
III.A. For this case, as for steady flow, the two phase velocities, cp and 
cu' are equal since P = P(u). 

The characteristics method breaks down at shock fronts not nec
essarily because the shock becomes a discontinuity but because the assumption 
of an equilibrium equation of state is untenable. 
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D. Relaxing Elastic-Plastic Solids38 

For elastic-plastic relaxing solids the assumption of particle
isentropic flow is retained, or, more accurately, the effect of entropy 
changes on the pressure-density relation is ignored. Nonequilibrium states 
are allowed, however, by assuming that the plastic strain-rates may be 
time-dependent, and that the stresses depend only on the elastic strains. , 
The plastic strains are assumed incompressible. 

The relation to be added to the conservation relations is: 

(aP/at) - a2(ap/at) = -F(P,p) (25) 

where F is the plastic strain-rate multiplied by twice the shear modulus. 
The sound speed, a, is here the elastic longitudinal velocity, a = 
I(A + 2~)/p. Combining this equation with Eqs. (7) and (8) in the same 
fashion as for isentropic flow in fluids yields the characteristic equa
tions 

c+: dP + padu = -Fdt, on dh/dt = pa/po 

c . dP padu = -Fdt, on dh/dt = -pa/po . 

dP - 2 
co: a dp = -Fdt, on dh/dt = 0 

These equations have been applied to the solution of plane wave propagation 
in quartzite, which exhibits pronounced time-dependent effects. 38 They have 
also been applied to infer the plastic strain-rate at the elastic yield 
point in iron from measurements of the decay in elastic amplitude. 40 

At the elastic shock front, when an elastic precursor wave exists, 
the jump conditions can be applied to relate P and u through the relation 
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Hence, on the leading c+ characteristic, 

dP/dt = -F/2 

Measurements of the rate of change of peak stress thus yield 
a measure of the plastic strain rate at the elastic front. Since no time 
is assumed available for dislocation multiplication the plastic strain rate 
in turn determines the velocity of propagation of mobile dislocations. 

In the general case, use of this theory to deduce constitutive 
relations from experiments requires that the constitutive relation be varied 
by postulating the function, F(P,p), and comparing computed wave profiles 
with observations until agreement is achieved. A possible weakness is that 
"viscous" stresses are not permitted. 

The relation between F and the phase velocities cp and Cu is: 

2 dP - a dp = -Fdt (on h = const) 

and 

dP = (on h = const) 

Therefore, 

or if the speed of elastic longitudinal waves is expressed in Lagrangian 

coordinates: 

and 

F = [(a*2/c c ) - l](ap/at)h' p u 
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This relation can be used, within the context of the assumptions 
implied by Eq. (25), to determine the plastic strain rate associated with a 
measured pressure profile at any point of the profile. Note that vanishing 
of the plastic strain-rate implies that cpcu = a*2 and that, in general, 
the product cpcu is less than a*2. To determine F from experiments, however, 
requires independent knowledge of a*. It is not clear how this quantity can 
be unambiguously measured tn wave experiments. However, acoustic measure
ments under hydrostatic pressure · could provide the necessary data. 

IV. EXPERIMENTAL RESULTS 

A. Equations of State 

At higher shock stresses, substantially exceeding the yield 
stress, the hydrostatic component of the stress tensor dominates and shock 
experiments effectively yield a hydrostatic equation of state. This is 
the Rankine-Hugoniot relation (Eq. (3)) mentioned earlier, with the x-com
ponent of stress, P, replaced by the mean stress, P. At these pressures 
the elastic wave is either small enough to be neglected compared to the 
IIplastic ll or deformational shock, or may be overtaken by the plastic shock, 
i.e. a single shock may be stable. The shock rise-times are also usually 
very small so that the transition is effectively steady state whether or not 
the final state is a true equilibrium state. Hence, the R-H jump conditions 
can be applied to relate the shocked state to the initial state and the 
more elaborate analysis of Section III.A. is unnecessary. 

A very large amount of data has been generated on equations of 
state, particularly of metals and rocks. 3,4l-43 Where comparisons can be 
made with hydrostatic data the agreement is satisfactory,44 and, in fact, 
shock data are used to calibrate static pressure apparatus in the higher 
pressure ranges. 45 

A principal uncertainty at the present time is the temperature 
of the shocked state, which can only be calculated with independent knowledge 
of, or assumptions about, the Gruneisen ratio and the specific heat. 3,4l 
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Attempts to measure temperature of the shocked state by means 
of the thermoelectric effect have thus far been unsuccessful. 46 Anomalously 
large signals have been observed whose physical origin is not understood. 
Some success has been achieved, however, in measuring free-surface tempera
tures. 47 ,48 These provide at least a consistency check on some of the 
assumptions employed in interpreting equation of state experiments. 

By using porous samples R-H curves centered on different initial 
states (Vo,Eo) can be determined and the Gruneisen coefficient measured. 3,49 

Thouvenin has questioned the assumption that equilibrium states can be achieved 
by this method,50 but later work by Hofmann et al indicates that they are 

.bl 51 poss, e. 

B. Constitutive Relations 

At shock stresses comparable to the yield stress, the effects of 
stress anisotropy and strain rate cannot be neglected. Not only does the 
elastic wave carry a significant fraction of the total stress, but the struc
ture of the plastic shock and the rarefaction wave that relieves the shocked 
state are more complex. Figure 11 shows an example of the compressive por
tion of the wave shape in single crystal Lithium Fluoride. It would clearly 
be a coarse assumption to consider these waves as simply two discontinuities 
in stress separated by a constant region. Much more detailed analysis of 
the wave structure than simple application of the jump conditions is required. 

Where strain-rate effects can be ignored, elastic-plastic theory 
can be applied to predict the differences between the one-dimensional consti
tutive relation and the hydrostatic equation of state. ll ,52 This theory 

predicts the curves shown as Fig. 12. Above the yield point the difference 

between the normal stress in the direction of propagation and the hydrostatic 
pressure is just (2/3)Y, where Y is the yield stress in simple compression. 
Work-hardening can be incorporated. The release curve representing the states 

through which a rarefaction wave carries the material is also offset from the 
hydrostat by (2/3)Y once the yield stress in the reverse direction is attained. 
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Several attempts have been made to verify this mode1. 11 ,53 Mea

surements of the compressive state in a1uminum 'indicate reasonably good 
agreement as indicated in Fig. 13. The rarefaction portion of the curve for 
the lower range of shock stresses shows poorer agreement, evidently because 
of Bauschinger effect. 36 ,54 

The Hugoniot elastic limit, indicated by Po in Fig. 12, is fre
quently observed to be time-dependent and, as would be expected, is also 

dependent on the history of the specimen. Nevertheless, the values observed 
are approximately characteristic of the material and a useful tabulation of 
measurements to date has been given by Graham and Jones. 55 

At shock stresses of 100 kbar or more the difference between 
Hugoniot and hydrostat is difficult to resolve; moreover, good hydrostatic 
data do not exist. Measurements of the rate of decay of a shock pulse of 
finite width, however, permit inferences to be made about the yield stress 
and shear modulus under shock conditions. 

The first experiments to observe shock decay were performed by 
A1tshu1er56 and Curran57 on aluminum. Curran's results indicated that shock 
decay is more rapid than would ·be predicted by the elastic-plastic model 
with constant yield stress. He postulated that yield stress increases with 
compression, attaining a value of 12 kbar at a relative volume, VIVo' of 
0.86. The initial yi~ld stress was 0.5 kbar. 

These results were verified, at least qualitatively, by Erkman. 58 

He found similar behavior in copper and epoxy. 

Recently, van Thiel and Kusubov have measured the shape of the 

rarefaction portion of an initially square pulse induced in aluminum by im

pact with a thin p1ate. 28 They used manganin gauges to interpolate between 
the peak pressure of the pulse and zero pressure. The impact pressure (130 

kb) was higher than in Barker's similar experiments. 36 Their conclusion is 

that the yield stress is a peculiar function of pressure in the rarefaction 

wave and approaches values as high as 28 kbar, or nearly five times the sta
tic strength. (Fig. 14) 

I~----------------------------~~~~~~~ 
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Their analysis is based on the assumption that the initial 
shocked state lies on the hydrostat rather than above it by (2/3)Y as 
predicted by elastic-plastic theory. Other experiments by these investi
gators, involving free-surface velocity measurements at an impact pressure 
of 313 kbar, indicate a yield stress of 14 kbar when analyzed according to 
conventional elastic-plastic theory.59 The two sets of experimental results 

are compatible; the factor of two discrepancy is the result of different 

assumptions about the shocked state. 

Similar experiments have been conducted in magnesium by Fuller 
and Price. 60 Their results are also compatible with the assumption that 
yield stress increases under pressure, attaining values perhaps two to five 

times the zero pressure value (1 kb) at a shock stress of 80 kb. 

A limited amount of work comparing shock and hydrostatic com

pression has also been performed on covalent and ionic solids. The first 
experiments were those on quartz, which appeared to show that the stress 
difference, (2/3)Y, that might be expected between the R-H curve and the 
hydrostat above the yield point does not obtain. 6l ,62 The conclusion was 

that the material loses rigidity at the yield point and that, therefore, 
the yield mechanism is fundamentally different in those materials than in 
metals. Comparison of the shock data with more recent hydrostatic data,63 
however, does indicate an appreciable difference, so that the elastic
plastic model, modified to include stress relaxation, may be at least pheno-

* menologically reasonable. (Fig. 15) Similar results have also been obtained 
for A1 203 in polycrystalline form. 

Whether these latter results imply that brittle crystals such as 
quartz and A1 203 can deform extensively by dislocation motion under shock con

ditions is not clear. If so, the dislocation mobilities must be substantially 

* I am indebted to Dr. E. B. Royce for pointing this out. R. A. Graham points 
out, however, that the states above the elastic limit for different orienta

tions of the quartz fallon the same curve. Moreover, there is a large reduction 
in electric polarization behind the second shock front. These observations are 

consistent with loss of rigidity above the elastic limit. 



36 

increased under shock. Recovered samples from experiments of this type are 
usually in the form of powder so that brittle fracture occurs somewhere in 
the shock and rarefaction process. Possibly fracture is the dominant yield
ing mechanism in the compression part of the wave, but intergranu1ar friction 
maintains sufficient shear stress to give the stress differences observed. 
The shear stresses calculated for the elastic wave are very much higher than 
for metals and approach theoretical shear stresses for perfect crysta1s. 61 ,62 

It should be noted that other data still indicate a loss of 
rigidity above the yield point, notably in single crystal M9065 and A1 203.66 

Many materials, including metals and ionic and covalent crystals, 
exhibit stress relaxation. This is most easily observed in the decay of 
the elastic precursor wave with distance of travel from the impact surface, 
and in the structure of the wave between the elastic and plastic shock fronts. 
Stress relaxation, or strain-rate, effects are also important in the plastic 
shock front and, although the structure of this front can be resolved in many 
experiments at low stresses, only modest effort has thus far been made to 
correlate the shock structure with strain-rate models. 

From the stress relaxation relations (Section 111.0.) the plas
tic strain-rate at the elastic front can be determined from the rate of 
decay of the peak stress of the elastic wave. The relation is: 

dP/dt = -F/2 

where F is the plastic strain-rate multiplied by twice the shear modulus. 
This can be combined with the relation from dislocation theory: 

y = (1/2)bNv 

where y is the plastic strain rate, b is the Burger's vector, N is the 
mobile dislocation density and v the velocity of dislocation motion. 

Since the elastic front is very steep it is assumed that no time 
is available for multiplication of dislocations. Hence, N = No' the initial 
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dislocation density. If it is further assumed that, following Gilman, the 
dislocation velocities are given by,40 

v = VOO exp -D/T 

where V
OO 

is the limiting dislocation velocity, D is a parameter called the 

drag stress, and T is the shear stress, the equations above can be combined 

and integrated to give the peak elastic stress as a function of distance of 
travel and impact stress. 68 Comparison of the data then yields a set of 

compatible values for No and D for a given impact stress. 

The most detailed study of elastic precursor decay has been per

formed on Armco iron by Tay1or. 40 His results are shown in Fig. 16. Reasonable 
values of No and D do indeed give a good fit to these data, lending support to 

the theoretical model. Johnson, however, has recently pointed out that Taylor 

assumed that only one slip system of several possible systems was active in 
the (polycrystalline) iron. 67 If all systems are taken into account through 

an averaging process the necessary dislocation density is increased by a 

factor of about five. This density seems somewhat high compared to that 
obtained from independent measurements; consequently, the validity of the 

model is still somewhat tenuous. Kelly and Gillis point out that under the 
right conditions one might be able to discriminate between various disloca-

tion models by experiments of this type. 68 

Precursor decay has also been studied in iron by Ivanov, et al,69 
in quartzite by Johnson,39 and in aluminum by Barker, et al. 36 

Jones and Holland have studied the effect of grain size on the 

Hugoniot elastic limit in mild steel. 70 Although static tensile tests showed 

marked differences in the upper and lower yield point with varying grain size, 

no effect on the Hugoniot elastic limit was observed. They conclude that 

under the impact-loading conditions employed dislocations do not move far 

enough to encounter grain boundaries -- in contrast to the case of static 
yielding. The dynamic yield points, moreover, were two to three times those 

of the static experiments. They have also observed Bauschinger effects in 

pre-strained specimens. 7l 
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C. Porous Solids 

There is considerable interest in shock propagation in porous 
solids, not only because equation of state data can be obtained over a wide 
range of densities and internal energies, as mentioned above, but also 
because porous solids possess excellent shock buffering characteristics. 
Hence, they can be used for the protection of structures from shock damage. 

The collapse of pore space leads to large losses of internal 
energy as mechanical energy. In a steady state shock the internal energy 
is given by Eq. (3): 

(3) 

The compressed specific volume is not highly sensitive to the energy; conse

quently, to a first approximation we can neglect the energy dependence of 
the P-V curve and visualize the energy loss as indicated in Fig. 17. 

In the solid material, with initial volume Vs ' a steady shock 
to pressure Pl carries the material along the Rayleigh line joining Pl and 
Vs' The triangular area under the Rayleigh line represents the internal 
energy of the shocked state. The portion of this internal energy recoverable 
as mechanical energy is approximately the area under the R-H curve. Hence 
the mechanical energy loss is the sliver-shaped area between the Rayleigh 
line and the associated R-H curve. Clearly, this area increases substantially 
with Vo as the porosity is increased. 

The mechanisms for energy loss cannot be precisely stated because 
the solid is three-dimensional on the scale of the pore size. However, the 
principal mechanism is probably initially the conversion of directed kinetic 

energy in the propagation direction to acoustic energy propagating in random 

directions; various dissipative me~hanisms then convert this energy to heat. 

Thouvenin has proposed a one-dimensional model (plate-gap model) 
for a porous solid which allows no mechanism for energy 10sses. 50 Consequently, 
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he concludes that steady state shocks cannot exist, and predicts that a single 
R-H curve will be obtained for all initial densities. Hofmann, et al, have 
shown, however, that with an energy-dependent equation of state the plate-gap 
model approaches the continuum steady-state model with increasing time and 
propagation distance. 51 The question is therefore not which model is correct 
but under what conditions is each model correct. Little experimental work 
has yet been done to establish the conditions under which each model is valid. 

The picture of the process shown in Fig. 17, although qualita
tively correct, is very much simplified. The R-H curves are, of course, 

energy dependent so that each value of Vo has its own associated P-V curve. 
At lower pressures the collapse of pore space may not be complete. Moreover, 
many porous solids exhibit a finite elastic yield stress so that a pressure 
pulse propagates as two or more wavefronts. 

A more accurate, though still qualitative, P-V diagram is shown 
as Fig. 18. The elastic limit is indicated by Pe and the pressure at which 
the pore space has completely closed is indicated by Pc' The two R-H curves 
above Pc are separated because of greater shock heating of the initially 
porous material. Partial compaction occurs in the region between Pe and Pc' 
and following compaction the relief curve is substantially steeper than the 
compaction curve. 

Linde and Schmidt72 and Herrmann73 have proposed phenomenological 
models for the P-V relation of porous solids, including the elastic yield 
point and the compaction region. Although they require experimentally deter
mined parameters, these models appear to fit existing data reasonably well. 
The region of partial compaction is least well understood, especially the 
release curves from a compressed state. 

The pressures at which pore collapse is complete depend on the 

material. Boade has reported that compaction is complete in porous copper 

at pressures of about 21 kbar . 74 In tungsten the compaction pressure is 
about 100 kbar75 and in iron it is 26 kbar. 76 Aluminum and graphite evidently 
compact at lower pressures, of the order of a few kbar. 72 
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Other models intermediate between the two mentioned have also 
been employed. The simple snow-plow model assumes zero elastic strength 

, 

(Pe) and compaction pressure (Pc)' and assumes further that the compacted 
material is perfectly rigid. 77 This model is very amenable to analysis and 
gives surprisingly accurate results for shock attenuation in highly distended 

materials. A modification which allows finite elastic strength but maintains 
the assumption ' of perfect rigidity of the compacted material has also been 

used for approximate analysis. 

The elastic strength and the elastic wave speed are both sub

stantially reduced by porosity. Butcher and Karnes have reported that the 
elastic precursor amplitude varies linearly with distention ratio from about 
9.5 kbar in iron of zero porosity to 1.5 kbar at a distention ratio (i.e. 
ratio of initial density of solid to initial density of porous solid) of 
1.63. 78 The elastic wave velocity also varies linearly from 6.0 km/sec at 
zero porosity to 1.15 km/sec at a distention ratio of 2.37. These results 
seem to be typical for most porous solids investigated to date. 

A third wave has been observed in copper by Boade. 74 The first 

travels with acoustic velocity with an amplitude of a few tenths of a kbar; 
the second travels with a velocity of about half the acoustic velocity and 
an amplitude of 1.35 kbar. These waves are followed by a third that carries 
the material to the peak pressure. The origin of the second wave is unclear; 
it may be related to a distinct stage of the compaction process. 

The shock profiles obs~rved in porous iron, graphite, and alu

minum are not steady but continue to spread in the specimen thicknesses 
employed in the experiments. 72 ,76 The physical mechanisms for stress relaxa

tion are not established; however, it is possible that the experiments are 
observing the transition from the plate-gap model to the continuum steady 

state model. 

D. Plastics 
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Only a limited amount of information is available for plastics 
in the stress range at which one expects nonhydrostatic effects to be appre
ciable. Poly methyl methacrylate (Plexiglas), however, has been studied by 

several investigators and it is reasonable to suppose that its behavior is 
typical of many po1ymers. 79-81 An excellent discussion of its high pressure 
behavior has been given by Dea1. 82 

There are two distinctive features of the shock response of 

plexiglas that are in marked contrast to the behavior of metals or of brittle 
solids. An elastic precursor wave has never been observed even at low im
pact stresses, and evidently one does not exist. 79-81 The observed shock 

velocities, moreover, extrapolate to the longitudinal sound speed at zero 
stress. It is not reasonable to suppose that the shear stresses increase 
indefinitely with shock stress, although Ainbinder, et a1, have observed an 
increase by nearly a factor of two in yield stress under confining pressures 
of about 2 kbar. 83 It may be that yielding occurs over a wide stress range 
so that a cusp in the P-V curve (Fig. 2) never appears. Measurement of 
release curves or comparison of shock data with hydrostatic data would pro
vide valuable information about the shear stresses. Experiments on epoxy 
at stresses as low as 3.2 kbar also show no indication of an elastic wave. 84 

That epoxy cannot be treated as a fluid is indicated by Erkman's data on 
shock decay.58 (Fig. 19) 

Plexiglas also exhibits pronounced relaxation of the shocked 
state with propagation distance in experiments in which rarefaction waves 
from boundaries cannot influence the shock front. 85 Thus, it is a highly 
rate-sensitive material. 

Kolsky has devised a constitutive relation for polymers that 

successfully predicts the pulse shapes in plexiglas and polyethylene in the 
. d h' 1 . 86 I . b d low stress range 1n ro or sp er1ca wave geometry. t 1S ase on a 

viscoelastic model and employs an empirically determined value, assumed 
independent of frequency, for the phase angle between the stress and strain 
amplitudes in a sinusoidal wave. It would seem fruitful to attempt to apply 

his analysis to plane waves as well~ and to try to extend it to include non

linear stress-strain behavior. 
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V. CONCLUSIONS 

The subject of one-dimensional-strain constitutive relations applicable 
to shock propagation, with the possible exception of high pressure equation 
of state measurements, is clearly in its infancy. As experimental techniques 
become more refined the concepts and assumptions of gas dynamics, such as 
discontinuous shock fronts and equilibrium, isentropic rarefactions, which 
formed the early foundation for the subject appear to lose pertinency. Cer
tainly, the assumption of isotropic stress even at stresses very much in 
excess of the yield stress has been found to be questionable. Stress relaxa
tion effects also seem to be very common. 

Because of the often severe distortion of the shock structure by reflec
tions at interfaces, the techniques which seem to hold the best promise for 
significant advances in understanding are those that can be imbedded in the 
material, such as piezoresistive gauges, electromagnetic velocity gauges, 
and, for transparent substances, optical methods. Quartz and sapphire gauges, 
of course, should be added to this list where the shock impedance of the 
sample is closely matched. These, combined with a general analytical treat

ment such as that outlined in Section III, should provide a sounder base of 
experimental information than currently exists. 

The elastic-plastic model has been demonstrated to give reasonable pre
dictions for metals when rate effects are not large and at stresses only 
moderately exceeding the yield stress. Rate effects are the subject of much 
current research and it may be expected that progress will be made in under

standing not only such phenomena as the decay of elastic precursor waves, 

but, perhaps more importantly, the physics of the plastic shock transition 

itself. The behavior of the yield stress at higher pressures is clearly not 

well understood; whether or not it increases substantially with pressure and 
to what extent the Bauschinger effect is important are still controversial 

topics. 

Brittle solids are even less well understood and one cannot predict 
with confidence whether for a given material substantial shear stresses can 
exist behind the IIplastic li shock front, nor what the release paths from a 
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shocked state may be. Many of these solids are further complicated by phase 
transformations. 

Plastics appear to comprise another distinct class of materials for 
which a model for the constitutive relation under shock needs formulation. 

Much more experimentation is required before theory can fairly begin on 
this problem, although the success of Kolsky's model at low stresses is 
encouraging. 

Porous solids form still another class in which much work is currently 
underway. The nature of the compaction process is only beginning to be 
understood and is crucial to predictions of shock propagation. 
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TABLE I 

Stresses Produced by Impact at 1.5 mm/~s. (kbar) 
I 

I 
Projectile Target 

Al Fe Pb W Lucite 

Al 130 175 175 235 30 

Fe 175 280 275 390 70 

Pb 175 275 270 385 70 

W 235 390 385 640 75 

Lucite 30 70 70 75 30 

I 
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Figure 2. Hugoniot Curve for a Solid Showing a Cusp at the Elastic Limit. 
A single shock front is stable at stresses less than "8" or 
greater than "0" . Intermediate shock amplitudes propagate as 
two wavefronts. 
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Manganin Pressure Transducer. Four pi-shaped manganin wires are 
shown imbedded in epoxy. The change in voltage is monitored as 
the shock passes over the wires. Current is held constant. 

(After Keough27 ) 
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Figure 6. Manganin Grid for use as In-Material Gauge. Thickness is 0.75 

x 10-3 in. Resistance of active element is about 1.5 ohms. 
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imbedded in insulator is monitored by observing EMF developed. 
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Figure 13. Comparison of Hugoniot and Hydrostatic Compression States in 
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Figure 15. Comparison of Hydrostatic and Shocked States in a-quartz 
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uncertainties in the shear stress of the shocked state above 

80 kbar. 
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Figure 16. Decay of Precursor Amplitude in Armco Iron. Curves are fitted 
using Gilman dislocation velocity model. (After Taylor40 ) 
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Figure 17. Approximate Hugoniot and Rayleigh Lines for Solid and Porous 

Material. Cross-hatched areas represent energy dissipated in 
shock transition. 
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Solid Showing Hugoniot Elastic Limit, Compaction Region and 
Stress Difference due to Shock Heating. 
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